Stability of the Blaschke-Santaló and the affine isoperimetric inequality

نویسنده

  • Károly J. Böröczky
چکیده

A stability version of the Blaschke-Santaló inequality and the affine isoperimetric inequality for convex bodies of dimension n≥ 3 is proved. The first step is the reduction to the case when the convex body is o-symmetric and has axial rotational symmetry. This step works for related inequalities compatible with Steiner symmetrization. Secondly, for these convex bodies, a stability version of the characterization of ellipsoids by the fact that each hyperplane section is centrally symmetric is established. 2000 Mathematics Subject Classification: 52A40

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability results for some geometric inequalities and their functional versions ∗

The Blaschke Santaló inequality and the Lp affine isoperimetric inequalities are major inequalities in convex geometry and they have a wide range of applications. Functional versions of the Blaschke Santaló inequality have been established over the years through many contributions. More recently and ongoing, such functional versions have been established for the Lp affine isoperimetric inequali...

متن کامل

A Generalized Affine Isoperimetric Inequality

A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

متن کامل

Mixed f - divergence and inequalities for log concave functions ∗

Mixed f -divergences, a concept from information theory and statistics, measure the difference between multiple pairs of distributions. We introduce them for log concave functions and establish some of their properties. Among them are affine invariant vector entropy inequalities, like new Alexandrov-Fenchel type inequalities and an affine isoperimetric inequality for the vector form of the Kull...

متن کامل

A Fourier Analytic Proof of the Blaschke-santaló Inequality

The Blaschke-Santaló Inequality is the assertion that the volume product of a centrally symmetric convex body in Euclidean space is maximized by (and only by) ellipsoids. In this paper we give a Fourier analytic proof of this fact.

متن کامل

On an Extension of the Blaschke-santaló Inequality

Let K be a convex body and K◦ its polar body. Call φ(K) = 1 |K||K◦| R

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009